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Abstract

Classical Jacobi ponnomiaIB,f“’ﬁ), with «, f > — 1, have a number of well-known properties,
in particular the location of their zeros in the open interival, 1). This property is no longer valid
for other values of the parameters; in general, zeros are complex. In this paper we study the strong
asymptotics of Jacobi polynomials where the real paramefer, depend om in such a way that

im % —a  im Pn_p,
n—-oo n n—-oo n
with A, B € R. We restrict our attention to the case where the limits8 are not both positive and
take values outside of the triangle bounded by the straight ine®, B=0andA+ B+2=0.Asa
corollary, we show that in the limit the zeros distribute along certain curves that constitute trajectories
of a quadratic differential.

The non-hermitian orthogonality relations for Jacobi polynomials with varying parameters lie in
the core of our approach; in the cases we consider, these relations hold on a single contour of the
complex plane. The asymptotic analysis is performed using the Deift—-Zhou steepest descent method
based on the Riemann—Hilbert reformulation of Jacobi polynomials.
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1. Introduction

Jacaobi polynomialﬂ(“’ﬁ) are given explicitly by

PP @) =2‘”Z<Zf,°j) <”+ﬁ>(z—1)"<z+1>” - (1)

k=0
or, equivalently, by the Rodrigues formi@b, Chapter V]

o l n
PPy = TR CRE NCEE N <d ) [(z — 1y 4+ 1)"+/>’]. (1.2)
Z

In the classical situatior( f > —1) the Jacobi polynomials are orthogonal+, 1] with
respect to the weight functiofl — x)*(1 + x)P and, consequently, their zeros are simple
and located if—1, 1).

Expressions (1.1) and (1.2) show that the definitioH,Bﬁ‘ﬁ) may be extended to arbitrary
o, f € R (or evenC); but some properties of the classical polynomials, in particular the
location and simplicity of the zeros, are no longer valid. In fa’éﬁ‘ﬁ) may have a multiple
zeroatz = 1lifa e {—1,...,—n},atz=-1if f € {—1,..., —n} or atz = oo (which
means a degree reductionyif+ o + f € {—1, ..., —n}.

More precisely, fok € {1, ..., n}, we have (see [35, formula (4.22.2)]),

(~kp), . T+p+1) m—-k!(z-1 (k.p)
b (Z)_r(n+ﬁ+1—k) n! ( 2 > Pai” @ (2.3)

This implies in particular thae, ~“? (z) = 0 if additionally max{k, —f} <n<k—p—1.
Analogous relations hold foP,f“”’) when! € {1, ..., n}. Thus, when botlk,! € N and
k +1<n, we have

PR () =2 - DF 4+ ) PED (o). (1.4)
Furthermore, when + « + f = —k € {—1, ..., —n},
(2h) Fn+a+1) k=D (a ﬁ)
Py (2) = T+ o) P P17 (@), (1.5)

see[35, Eq. (4.22.3)]; we refer the reader to [35, §4.22] for a more detailed discussion.
Taking into account formulas (1.3)—(1.5) we exclude these special integer parameters from
our further analysis.

Jacobi polynomialsP,f“’ﬂ) with parametersg, € R (and in general, depending on the
degrea) appear naturally as polynomial solutions of hypergeometric differential equations,
orin the expressions of the wave functions of many classical systems in quantum mechanics
(see e.qg. [2]), or even in the explicit evaluation of integrals of rational functions [4].

In this paper we study the asymptotic behavior of Jacobi ponnorWé%ﬁ"), where
the parameters,, ,, depend on the degredin such a way that
im — = A, lim Bu =B (1.6)

n—o0o n n—oo n
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and
A<O<B, A+B>-1 A#-1. a.7)

In [27], the authors considered different regions of tlie B)-plane, corresponding to
different cases in the asymptotic study of Jacobi polynomials with varying parameters
satisfying (1.6). The symmetry relations (see [35, Chapter IV])

PP @) = 1R @) (1.8)
and
‘ 1-z\" & +3
PP @) = (2 Z) PP <Z> , (1.9)
z—1
whereo’ = —2n — o — ff — 1, allow to restrict our study to the following cases, from which

all the others can be obtained:

A, B >0, (C.1)
A<-1 and A+ B> -1, (C.2)
—1<A<0 and B >0, (C.3)
A+B>-1, and A,B <0, (C.9)
A+B<-1 and A,B> -1 (C.5)

(see Figl, which appeared first in [27], where equivalent regions under those transforma-
tions are shown).

Case C.1lisclassical and has been widely studied (see [5,6,11,20,26,29]). The asymptotic
results therein are based on either the well-known orthogonality conditions satisfied by the
Jacobi polynomials ofi-1, 1], or on their integral representation.

However, until very recently, strong asymptoticslq(f‘”’ﬁ”), whena,, 8, takearbitrary
real values and limits (1.6) exist, has not been established. In this case the orthogonality
conditions were unknown and the complex saddle points make the application of the classical
steepest descent method to the integral representation of Jacobi polynomials practically
unfeasible.

A non-hermitian orthogonality satisfied by Jacobi polynomials in case C.2 has been
observed in [27]; this fact was used there to establish the asymptotic zero distribution using
a potential theory approach.

Recently in [25] a whole spectrum of orthogonality conditions for Jacobi polynomials
with arbitrary real parameters has been established. In particular, we can find examples of
orthogonality on a contour or arc of the complex plane, an incomplete or quasi-orthogonality,
or even multiple or Hermite—Padé orthogonality conditions. The classification of the cases
depends on the number of inequalitet < A < 0,-1<B <0,-2<A+B < -1
that are satisfied. In particular, cases C.3-C.5 correspond to combinations of pardmeters
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A=-1 A=0

A+B=-1

A+B=-2

Fig. 1. The five different cases in the classification of Jacobi polynomials with varying parameters according
to [27].

andB such that exactly one, exactly two, or exactly three, respectively, of the inequalities
are satisfied (cf. Figl).

Nevertheless, the method used in [27] cannot be immediately extended to the rest of
the cases. One of the essential assumptions there is a non-hermitian orthogonality of the
polynomials on a single contour, on which the support of a certain equilibrium measure has
a connected complement.

Due to this reason, in [22] the steepest descent method of Deift and Zhou [10], based on
a matrix Riemann—Hilbert problem, was used to establish the strong uniform asymptotics
of the Jacobi polynomials with parameters satisfying conditions C.5. In this paper, we use
several results and ideas from there.

The aim of the present article is to extend this analysis to sequences of Jacobi polynomials
with varying parameters corresponding to cases C.2 and C.3. Note that along with case C.1,
these are the only situations when a full system of orthogonality relations on a single contour
in C exists.

We also remark that a similar study, but for Laguerre polynomials with varying parame-
ters, has been carried out in [23,24,28].

The paper is organized as follows. In Section 2, the main results about strong and weak
zero asymptotics are formulated, along with some preliminary definitions and lemmas which
are proved in Section 3. In Section 4, a full set of orthogonality relations on a single contour
allows to pose a Riemann—Hilbert problem and to apply the Deift and Zhou'’s steepest
descent method (see [10], and also [3], where this method was applied on trajectories of a
quadratic differentials for the first time). This technique allows us to transform the original
Riemann—Hilbert problem in order to obtain strong asymptotics of its solution. Finally, the
last section is devoted to the proofs of the main results.
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2. Main results
2.1. Basic definitions

Letus denote bC* = {z € C: Im(z) > 0}andC™ = {z € C: Im(z) < 0}. For A, B
satisfying (1.7), we define the points

B?— A2+ 4/(A+ DB+ DA+ B+1)
(A+ B +2)2

{12= (2.1)
(foramotivation of this definition see Sectibr8). We will use the following convention: for
(A, B)suchthath < —1 < A+ B (case C.2)[; e Ctand{, = {y;for-1< A <0< B
(case C.3), we agree thatl < {; < {, < 1.

With these(; », consider the set

Tt =L = )Y2
& t2 -1

N“:e'{zed:: Re dt:O}, (2.2)

where we continue the integrand analytically along the path of integration. Obviously, the
set does not depend on the branch of the square root. In fact, it coincides with the union of
the critical trajectories of the quadratic differential

-0

e dz?, (2.3)

or more precisely, with their projection db. Taking into account the local structure of
trajectories of quadratic differentials (see ¢34.] or [34]), we can prove the following (see
Fig. 2):

Lemma 1. If parameters AB satisfy condition(1.7), then for(; , defined in(2.1) the
quadratic differential is regular. In other wordsll its critical trajectories are finite and
have the following global structursee Fig.2):

e For (A, B) such thatA < —1 < A + B (caseC.2), N consists of three arcs which
connect; , and intersect the real line in exactly one poiint,such a way that each of
the intervals(—oo, —1), (=1, 1), (1, 00) is cut by one of these arcs.

e For (A, B) such that-1 < A < 0 < B (caseC.3), NV consists of three arcgne of
them is the real intervdl{4, {,] and the other two are Jordan contoupgssing through
z = {4 (respect.z = {5) and enclosing = —1 (respect.z = 1).

Now we define some relevant curves. We denoté lilye rightmost curve from\. For
case C.2[" consists of an arc connectidg , and crossing once the interv@l, +-oc0), and
for case C.3, itis a closed contour passing through({, and surrounding = 1. For case
C.2 we also consider the orthogonal trajectoriés (defined by replacing Re in (2.2) by
Im). As in Lemma 1, it is easy to prove that their global structure is as appears in Fig. 2,
left (dashed lines). We denote by the arc of//* joining {; and—1, andy™ = y*.
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Fig. 2. Typical structure of the s@{ for cases C.2 (left) and C.3. Dashed lines on the left are orthogonal critical
trajectories.

Fig. 3. Contour< for cases C.2 (left) and C.3.

Finally, we define the sél as the smallest connected subseto€ontaining{; , andI".
Namely,
5 def r if A<—-1< A+ B, (case C.2), (2.4)
T T U, ] if —1<A <0< B, (case C.3). '

As we see, in case C.2 the &&is made of one critical trajectory of the quadratic differential
(2.3), while in case C.3 it is made of two. In both ca&eis oriented from{, to {5, and,

in case C.3, clockwise, in such a way that +o0o) is cut from the upper to the lower
half-plane (see Fig. 3). For any functibanalytic and single-valued in a neighborhood of
%, this selection of the orientation induces two boundary valudafX that we denote
by f1 and f_ depending if we approach from the left or from the right, respectively. On
the sequel, we shall make use of the concept of the polynomial convex jhdfich is
denoted by P&). In case C.2, P&) = T, so that IntPcX)) = @, where by Inte) we
denote the set of inner points @f Analogously, in case C.3, Zis the union of£ and of
the closure of the bounded component of its complement, given yd@)).
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Next, we define some functions that will play a role in what follows. We denote

R E V- {DGE-{).

It is a multi-valued and analytic function i@, and we select its single-valued branch in a
plane cut fron; to {, by imposing that

. R
lim ﬁ =1
7—>00 z

This allows us to define the (a priori complex) measure

A+ B+2 Ri(2)
2mni 1-22

du(z) = dz, zeZ, (2.5)

with Z defined in (2.4) and oriented as explained. By Lemma 2 belds/,a unit positive
measure ork. Using Cauchy’s Theorem it is easy to find an analytic expression for its
Cauchy transform:

def/ du(t) A+ B+2 R(2) A2 B/2

= — C\Pc), (2.6
p— > 21 -1 i1 G \Pc@), (2.6)

Tz =

additionally, in case C.3,

A+B+2 R(2) A/2 B/2
- — Int(P ) 2.7
2 2-1 z—-1 z+471 2 € Int(Pe)) @7
Now, let us define irC \ X a function which plays a key role in the description of the
strong asymptotics of Jacobi polynomials,

f(z) = —

z
G = exp</ ﬁ(z)dr) . (2.8)
¢
We normalizeG by imposing that
lim G(z) =1, (2.9)
62

where the limit is taken witlz approaching, from C \ T (in case C.2) or fronC™ \ X (in

case C.3). Observe that singés the Cauchy transform of a unit measuredyriunctionG

is analytic and single-valued it \ X in both cases considered. Taking into account (2.6)

and (2.7), we see that there exists
def im G(Z) )

7z—>00 d

(2.10)

In addition, let

w(z) =w(z; A, B) € c(z — DAz + 1)B/?
B S/ AJ2 BJ2
= exp(/g2 (_t —71 + 1 1) dt) , (2.11)
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which is a multi-valued analytic function i@ \ {£1}. In what follows, we fix its single-
valued analytic branch i@\ (—oo, 1], by choosing the constanor the path of integration)
in such a way that

lim w(z) =1, (2.12)

=62

where again the limit is taken wittapproaching, from C\ I" (in case C.2) or fronC*\ =
(in case C.3).
The last ingredient for the asymptotics is given by the functions

ger a(z) +a(z)~t der a(z) —a(z)~t

Nu(z) = —————— and Npp@) = ———F—— (2.13)
2 2i
(this notation is chosen because they will be entries of a certain nh\tsiete (4.15)), where
£\ 4
az) € <Z 2) (2.14)
72—

isdefinedinC\I'forA < —1 < A+ B (caseC.2),andift\[{1, {s]for—1< A <0< B
(case C.3). We select the branchedmposing the normalization condition

lim a(z) =1.

7—>0
Then,N11(z) — 1 andN12(z) — 0 asz — oo.
2.2. Strong asymptotics

First, we consider the strong asymptotics for Jacobi polynomials with varying parameters
satisfying (1.6) and (1.7) withaway fromZ.

Theorem 1. Let (A, B) satisfy(1.7). Then,for n — oo, the monic Jacobi polynomials
Dn = "B have the following asymptotic behavior:

" 1
Pn(2) = (?) N11(2) (1+ o (;)) , (2.15)

locally uniformly inC \ PcZ), where constant was defined ir{2.10).
Furthermore, in the bounded componentof X,

1 —n 1
Pa(@) == ((G(z)wz(z)) N1 () <1+ 0 <—>>
K n

+ 2ie~ "™ sin(Ann) G™(2) N12(2) <1 +0 <%>>> . (2.16)

In particular, this theorem shows that zerosPé‘i’”’B”) do not accumulate it \ Pc).
Next, we describe the asymptotics Bnbut away from the branch poin{s »:
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Theorem 2. Let (A, B) satisfy(1.7). Then,for n — oo, the monic Jacobi polynomials
pn = PP have the following asymptotic behavior for z away from:

(@) In caseC.2,0n the“+"-side of I

1 1
pu(e) = — (G"(Z)Nll(z) (1+ 0 <_))
K n
2, " 1
+(Gee) "N (140 (1)) (2.17)
n

(b) In caseC.3,0n the“—"-side of I" formula(2.16)is still valid, while on the*+"-side of
r!

1 1
pa(a) = — (G”(Z)Nll(z) (1+ 0 <_>)
K n

4 2ie~ A sin(Amn) (G(z)wz(z)>_n N12(2) (1+ %) <l>>> (2.18)

n

(c) In caseC.3,0n the*+"-side of ({1, (),

1 1
D) = — (G"(Z)Nn(z) (1+ 0 <_))
K n

+ (G(z)wz(z))_n N12(2) <1+ 0 <1>>) , (2.19)
n

while on the'—"-side of ({1, {,),

1 1
pa(e) = — (G"(Z)Nll(z) (1+ 0 (—))
K n
— ¢~ 2Amin (G(z)wz(z))in N12(2) (1+ 0 (%))) . (2.20)

Remark 1. All these asymptotic expressions match on the boundaries of the overlapping
domains and on the respective regions. For instance, it will be shown that in a small neigh-
borhood of every point aE (distinct from{; ,), |G(z)w(z)| > 1forz ¢ X. Hence, the first
termin (2.17)—(2.20) is dominant, and away fr@hthey reduce to (2.15).

Furthermore, in case C.3,Afn are not exponentially close to integers (in the sense that
will be made more precise below), the second term in (2.16) dominates, and we may write

pn(2) = <$) 2ie~ A" sin(Amn) N12(z) <1+ 0 (%)) _

The asymptotic formulas above are no longer valid close to the branch geinté\s
it usually happens in a neighborhood of the “soft ends” of the support of an equilibrium
measure, asymptotics is described in terms of the Airy functiq@)4ind its derivative.
We give explicit formulas only for the rightmost (according to the orientatioB)diranch
point{,, which is in a certain sense, the “interesting” one. Clearly, the analysis at the other
point is similar.



146 A. Martinez-Finkelshtein, R. Orive / Journal of Approximation Theory 134 (2005) 137-170

In order to formulate our result in a more compact form it is convenient to introduce the
function

et A+B+2 (* R(t
def A+ B + / (1) (2.21)
¢

PO =" 1-2%"

2

Consider case C.2. Given a sufficiently smalk- 0, and a neighborhood, ({5) g {z €

C : |z—{5] < ¢}, itis asingle-valued analytic function ik ({») \ I". Furthermore, taking
into account the local behavior &, function

F@E3 (p0)? (2.22)

can be extended as single-valued to the wiiQlg,). Here the 23rd power is chosen such
that f(z) > 0 alongy—.

Theorem 3. Let(A, B) such thatA < —1 < A + B (caseC.2).Then,there existg > 0
suchthatifiz — (5| < ¢, we have that the monic Jacobi polynomigjs= Pn(A”’B”) satisfy

1/6 (1/4
pu() = Y™ (” T@) pi 237 2y) (1+0<%))

K'w" (z) a(z)

() i70,2/3 1
s A (140 ().

wherea(z) is defined in2.14),and we takef/4(z) > 0 alongy~.

Remark 2. Obviously, the asymptotic behavior néain this case is completely symmetric
to {, with respect tdR.

Consider case C.3. For a sufficiently smallkOe < 1 — {5, ¢ is single-valued and
analytic inA.({») \ ({1, {»). Functionf, defined again by formula (2.22), can be extended
as a single-valued function to the whalg({,), with the 2/3rd power chosen such that
f(z) > 0along((,, 1).

Theorem 4. Let (A, B) such that-1 < A < 0 < B (caseC.3).Then,there existg > 0
such thatifiz — (5| < &, we have that the monic Jacobi polynomigjs= P," 5" satisfy

1/6 (1/4
pu(e) = " (” S @) 4?32 <1+0<%>>

K'w" (z) a(z)

a(z) /e 2/3 1
- m«‘l (n7f(2)) (1+ o (;))) , (2.23)

wherea(z) is defined in(2.14),
A@) = A(t: A, n) & =471 Ai (1) + 2ie™/3 sin(Amn) Al (e“’“'/3 t) ,

and we takef1/4(z) > 0 along ({5, 1).
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Remark 3. Formulas stated in Theorends4 are locally uniformly continuous both on
thezand(A, B) planes, which allows to extend them to the general case,¢fand{f,}
satisfying (1.6) and (1.7).

2.3. Weak zero asymptotics

As a corollary of the asymptotic formulas stated in the previous section we can obtain

the distribution of the zeros of the sequence of polynonﬁ’é@’ﬁ"), where{u,} and{f,,}
satisfy (1.6) and (1.7). By “weak zero asymptotics” we understand here the limit (in the

weak-* sense) of the normalized zero counting measures associateﬂ,f\?\?i‘tlli‘f).

The measurg introduced in (2.5) will be all we need for the description of the asymptotic
behavior of the zeros in case C.2. However, region C.3 comprises the pathological cases
given by (1.3). By continuity, we may expect here a variety of limit behaviors. In fact, in
order to characterize completely the weak zero asymptotics of Jacobi polynomials in the
case C.3 we need to use a 1-parametric family of measures including (2.5). Namely, in case
C.3, we must consider the sets

Ny = NP E e € GEuE)] =)

2 R() r
—lzeC:Re dt = :
{Ze ,/;vztz—l A+B+2}

for r > 0. They also consist of trajectories of the quadratic differential (2.3),Mne: V.

Now, we defind’, as the rightmost curve i, or, what is the same, the partf which is

entirely contained in the half-plarde € C : Rez > {(5}. Itis easy to check that fer > 0 the

level curvel’, is a closed contour insidé = I'g surrounding the poing = 1 (see Fig. 4).
For eachr € [0, co) we define the absolutely continuous measure

e A+B+2 Ri(2)
A

dZ» Z € (Clv é’z) U r}‘5 (224)

and, forr = oo, the measure

def A4+B+2 /(z={D2—2)
2

d = —Ad
:uoo(z) 1+ o 1_ Z

L1L1.05) dz, (2'25)

Whereml,g2J is the characteristic function of the interVél, {,], andd; is the Dirac delta
(unit mass point) at = 1.

Lemma 2. If (A, B) satisfy(1.7),then forr >0 measureg., in (2.24) and (2.25) (andn
particular, measureu in (2.5)) are unit positive measures. Moreovéat (A, B) satisfying
—1 < A < 0 < B (caseC.3),we have that foD<r < + o0,

([, 2D =14+ A, p.(I)) =—A, (2.26)

where we considelg = I"and 'y, = {1}.
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0.4 T T T T T

0.3 .

0.2 .

0.1f

—0.4 | | | | |
-1 -0.5 0 0.5 1

Fig. 4. Some trajectories of the quadratic different@Bj, or equivalently, some level sdi$, for the values
A =-08andB = 05.

Now we are ready to state the weak zero asymptotics for the Jacobi polynd?;h“ra(jé).
In case C.3, wher1 < A < 0 < B, we make an additional assumption: the sequence of
parameters,, satisfies that the following limit

lim [dist(a,, Z2)]Y" = ¢, 0<r< + oo, (2.27)
n— oo

exists. Then, it holds:

Theorem 5. Consider a sequence of Jacobi ponnomiB}fg"’ﬁ"), n € N, such that se-
quencedo, }, {,} satisfy(1.6)and(1.7). Then:

(i) If (A, B) satisfy conditionC.2,then the zeros QP,f“”’ﬁ"), n € N, accumulate on the
arcI', and measure: in (2.5)is theweak™ limit of the corresponding normalized zero
counting measures.

(ii) If (A, B) satisfy conditiorC.3,and(2.27)holds for som&® <r < + oo, then the zeros

of Jacobi polynomialsl’,f“”’ﬂ"), n € N, accumulate ori{y, (o] U I';, and measure.,
defined above is theeak* limit of the normalized zero counting measures.

As we said before, part (i) of Theorem 5, corresponding to case C.2, was established in
[27] for parameters,,, 3, varying according to (1.6) but with, B < —1, which is aregion
of the (A, B)-plane equivalent tot < —1 < A + B by means of transformations (1.8)
and (1.9).
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In the case C.3 the situation whenr= 0, that is,
lim [dist(a,, 2)]¥" = 1,
n—0o0o

isgeneric, because ittakes place when parameters do not approach the integers exponentially
fast. When the limit in (2.27) is smaller than one, i.ex 0, curvel  is replaced by a level
curvel,, strictly contained inside the bounded component of the complemé&httad the
support of the limit measure becomes disconnected. Finally, when paramgters N,
tend to integers faster than exponentially, the limit measure has a discrete part consisting of a
Dirac mass at = 1. We could have anticipated this phenomenon observing the coalescence
of zeros given by (1.3).

Examples of zeros of Jacobi polynomials for cases C.2 and C.3 are represented in Fig. 5.

Remark 4. Case C.3 deals with situations when real zeros arise. \Wiweg «,, < 0 and

B, > —1, Pn(“’ﬁ) satisfy a quasi-orthogonality relation (see Theorem 6.[2%]}) which
ensures the existence of, at least- [—o,] zeros in(—1,1). This lower bound of the
number of zeros in—1, 1) is exact, according to the so-called Hilbert—Klein formulas [35,
Theorem 6.72]. Since lip, o “=%1 = 1+ 4, looking at (2.26) we see that the mass
of the part of the asymptotic measure of zeros supportdd0d-] C (—1, 1) agrees with
the limit of the ratio of zeros placed i1, 1), given by the Hilbert—Klein formulas.

Remark 5. At this point, it is natural to ask about what happens wher= —1 and

B > 0, which is a transition case between C.2 and C.3. By (1.8) and (1.9), it describes
also the situation whe(4, B) belongs to any of the straight lines= —1, B = —1 and

A + B = —1, outside of the squai, B) € [—1, 0] x [—1, O]. Roughly speaking, in this
case the endpoinf§ , are confluent in a single point, sdyand zeros approach a simple
closed contour emanating from this point (critical trajectory) and surroungdiagl, or

other closed trajectories strictly contained in the interior of this critical trajectory. In [27],
the equation of this critical trajectory is conjectured. This conjecture is proved in [12,17]
for the particular case wherg, = —n — 1 andf, = kn + 1, k being a fixed positive

real number. This and the other transitions between cases C.1 and C.5 deserve a separated
treatment.

3. Proof of the auxiliary lemmas

Proof of Lemma 1. This proof is based upon the local structure of the trajectories of
quadratic differentials (see [31] or [34]). We restrict our attention to the case wiiere

A < 0 < B (case C.3). The proof of the other case is similar (see also the proof of Lemma
2.1in[22)).

First, we see that for1 < A < 0 < B the quadratic differential (2.3) possesses two
simple zeros at; ;. Thus, we know that three critical trajectories emanate figm at
equal angles. Moreover, the segmgft {»] c N, which is straightforward to verify by
definition of V.
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15 T T T T T T T T T

3
Vo
15
_ 5 50_10-5 . .
Fig. 5. Up, case C.2: zeros @tl(ooll(klo -50-10 ), along with the curvd’, corresponding tet = —1.1 and
. —80-107°,50-10"° —-80-10"1550-107%) . :
B = 0.5. Down, case C.3: zeros (00 ) (left) and Pl(00 ) (right), along with

the set¥, corresponding te\ = —0.8 andB = 0.5.
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On the other hand, (2.3) has double poles at +1 andz = oo, in such a way that if
we consider the rational functiof(z) = —(z — {1)(z — {2)(z% — 1)~2, we have that the
residues of/Q at these points are purely imaginary. Therefore, we conclude that near these
double poles the trajectories are simple closed contours.

Now, the symmetry ofQ with respect to the real axis, along with the facts that the
trajectories cannot tend to infinity and (2.3) has no other singular point, allows one to
ensure that the other critical trajectories are two closed contours emanating; feort{.

The fact that a closed trajectory needs to surround a singular point implies that these closed
trajectories intersect the real axis in two points, one of theifija-oo) and the other in
(—o0,-1). O

Proof of Lemma 2. Taking into account the definition dt(z) and (2.1), it is easy to see
that

2A
R(1) = + 2;{ (3.1)
— >0 if —1< A <0< B (caseC.3).
A+B+2
In the same way,
2B .
R(-1) = ——— <0 ifA<0<B and A+ B> —1. 3.2)
A+B+2

Thus, the definition ok in (2.4) yields that (2.5) is real-valued @and does not change
sign on each of its components. The same remains valid wiierx A < 0 < B and
0 < r< 4 oo for p, onits supporlk, = I, U [y, (5]

Moreover, for(A, B) such that-1 < A < 0 < B, taking into account the definition of
X andZ,, the residue theorem and (3.1)—(3.2), we have fgr-O< +oc:

u,(D):/ du, (1) = —(A+ B+2) res( k@ )
L =1\zc—-1
=(A+B+2)%l)=_,4;

clearly, alsou,, (Fs) = o ({1}) = —A.
On the other hand, forQr < + oo,

P

S

= A+—B+2 res R(Z) + res R(Z) + res R(Z)
o 2 =1\z2 -1 =1\z2—-1 =0\ 72 —1

A+B+2 A B
= 1+ — =1+4+A,
2 A+B+2 A+B+2

{
1 (G Gol) = / di, (1)
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and, therefore,

&
@) = [dwo = [ ano+ [Cawo =1
3, I, O
Analogously, for(A, B) suchthatA < —1 < A + B, itis easy to see that

wI) = / du(t) =1,
r

and it settles the proof. [

4. Riemann-Hilbert analysis
4.1. Orthogonality and the Riemann—Hilbert problem

As it was mentioned in the Introduction, the key fact for the asymptotic analysis is a full
system of orthogonality relations satisfied by the Jacobi polynomials on simple contours,
which allows to pose a matrix Riemann—Hilbert problem (RHP) and apply the Deift-Zhou
steepest descent method.

The following result was established[25, Theorem 5.1]:

Lemma 3. LetC be aJordan arc connecting= —1+0i withz = —1—0i and surrounding
z =1once. Iff > 0,then we have

kp@B) . 2, =0, k<n,
/ct P, (0w (t,oc,ﬂ)dt{ 20, k=n (4.1)

wherew(-; «, §) has been introduced if2.11).

From the seminal work of Fokas et al. [19] (see also [7]) it is known that the orthogonality
(4.1) can be characterized in terms of the following Riemann—Hilbert problem: find a matrix
valued functiony : C\C — C?*2 satisfying the conditions below:

(RH1.1) Yis analytic inC \ C.
(RH1.2) Y has continuous boundary values@rdenoted byr, andY_, such that

2.
Yi(z) =Y_(2) <é w (Z’la’ ﬁ)) , forzecC.

(RH1.3) Asz — oo,

Y(2) = (1 Lo <%>> (ZO Zf’n).

(RH1.4) Yis bounded in a neighborhood o= —1.
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Fig. 6. Contour& for the Riemann—Hilbert problem fof; cases C.2 (left) and C.3.

Proposition 1 (Kuijlaars et al.[25]). The unique solution of the Riemann—Hilbert problem
(RH1.1)—(RH1.4)s given by

24.
Pa(@) L_/Mw
2ni Je

t—z
Y ) = )
© 1 dn-1(OW?(t; o, f)
QMfl(Z) . dt
2ni Je r—z
wherep, (z) = ﬁf"‘””(z) is the monic Jacobi polynomiahnd g,—1(z) = bn_lPrf‘f'f) (2),

for some suitable non-zero constant 1.

Let (A, B) be a pair satisfying (1.7). Then for everye N, monic polynomials?, ™5™
satisfy the conditions of Lemma 3. Hence, for @gs described in Lemma 3, polynomials
PA™B" can be characterized as (e 1) entry of the unique matriXsolving the Riemann—
Hilbert problem (RH1.1)-(RH1.4) with

o= An, = Bn.

Taking advantage of the freedom in the selection of the coritau(4.1) we will choose
different configurations for both cases C.2 and C.3. This choice is mainly suggested by the
numerical evidence on the actual location of zeros. For describing the apprdpriateill
use the contours defined in subsection 2.1, correspondifgia B fixed.

In case C.2, whed < —1 < A + B, we will make the contouf in Lemma 3 coincide
with y~UT'Uy™, oriented clockwise (Fig. 6, left). Hence, we are interested in the Riemann—
Hilbert problem (RH1.1)—~(RH1.4) witf =y~ UT' Uy*, « = An and = Bn.

However, incase C.3,whefil < A < 0 < B, itis convenientto make part of the original
contourC coalesce along the intervigt 1, {5] (traversed twice in opposite directions), and
the rest go along the af¢. This deformation creates a new contour, which we denote again
by C, and we choose its orientation as in Fig. 6, right. Consequently, it yields a new RHP,
still characterizing the polynomials, . With respect to problem (RH1.1)-(RH1.4), we have
to modify only the jump matrix ori—1, {,) as a result of the coalescence of two original
sub-arcs of’: its (1, 2) entry becomemi” — w2 on(—1,{,). The new Riemann—Hilbert
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problem is: find a matrix valued function = Y4-8) : C\ ([-1,{,]UT) — C?*? such
that the following conditions hold:

(RH2.1) Yis analytic onC \ ([—1, (o] U D).
(RH2.2) Y has continuous boundary values©i {—1, {»}, denoted byy; andY_, such
thatY, (z) = Y_(2)Jy(z), where

) N
Jy(2) = (é d, wir”(z)>’ re (=10,
with
dy €1 — 724 = 2jo= AT sin(Anm), (4.2)

and withw(z) = w(z; A, B) defined in (2.11).
(RH2.3) Asz — oo,

Y(z) = (1 Lo <§>) (ZO z9">'

(RH2.4) Yis bounded in a neighborhood of= —1 andz = {5.

In both case£ \ C has two connected components, one containiagl and the other
containing infinity; we denote these component€£hyandQ.., respectively (see Fid).

The steepest descent analysis, that we are going to carry out next, introduces new contours
which are unions of a finite number of curves and arc§€oin order to simplify notation
we will call all the end points and points of self-intersection of such cusiregularpoints,
and the rest will beegular points of the contour. Hence, we could rephrase (RH1.4) and
(RH2.4) saying thaY is bounded in a neighborhood of all singular point€ of

4.2. First transformatiory — U

In order to shorten notation, we use the Pauli matrix

aef (1 O
"'3:(0 —1)’

x 0

g3 __
and denote 3 = <0 1

function

). Also for the sake of brevity, it is convenient to introduce the

H) ¥ 6w, (4.3)
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[H@)I<1

Fig. 7. Regions whergH (z)| < 1 for cases C.2 (left) and C.3.

analytic and single-valued i \ (X U (—o0, 1]). Using (2.6)—(2.12), we immediately get
that

e Forcase C.2,

A+B+2 (* R
H(z) = exp( + > + / 2 (_t)ldt> , forzeC\ T U(—00,1)). (4.4)
62
e Forcase C.3,
A+B+2/Z R(1) )
expl —— ——dt |, forz € C\ (Pc)
p( 2 (5+i0 t2 -1 \
z
H(z) = exp _ATBF 2[ R@) dt ), forz e Int(PcE)) N CT,
2 i 2—1
. A+B+2 [ R
e~ TA exp(— to / 5 @ dt), forz e Int(PcE)) N C~.
2 {p tc—1

(4.5)
Observe that the same convention as in (2.9) for the path of integration applies:

lim H(z) =1.
Ch\Z3z—(

Furthermore, taking into account (2.26), in the case C.3,

lim H(z) = ¢ ™rD) — AT (4.6)
C \Pc®)2z—(>

In both cases C.2 and C.3, the sets of trajectokiesndV,, (» >0), introduced in Section
2.3, may be characterized by the conditiofsz)| = 1 and|H (z)| = ¢'/2, respectively.
Fig. 7 shows also the domains whefe(z)| < 1.
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FunctionH has continuous boundary values at regular point& af (—oo, 1], which
satisfy:

e Incase C.2:

H:l(z), zeTl,
Hi(z) = { ™A H_(2), ze(=1,1),
e"ATB g (2), 7€ (—o00,-1).

e Incase C.3:

H™ (), zeTl,
—miA -1
H — ] e ™ H T (2), z e ({1,082, 4.7
+@ A H_(7), ze (=1, D\ {1, &l “9

e"ATB H_(2),  z € (o0, —1).
This allows us to express the boundary value& at the regular points € in terms ofH:

G4 (2)
G_(2)

1
=H%(z) and Gi()G_(z) = ——. (4.8)
w_,.(Z)
Now we are ready to introduce the first transformation of the RHP, with the aim to
normalize it at infinity. Fo,, in (4.2), let us fix any value 01,}/2, and define

K"93Y ()G (z) "%, in case C.2;

" : 4.9
d; 03/2;(1"03Y(Z)G(Z)_nasdrfa/zv in case C.3, “9

U(z)={

with x given by (2.10). Obviously, matril solves now a new Riemann—Hilbert problem.
Taking into account (4.8) we can state it as:

(RH3.1) Uis analytic onC \ C.
(RH3.2) U has continuous boundary values at the regular poinfs dénoted by, and
U_, suchthat/, (z) = U_(z)Jy(z), where, for(A, B) in case C.2,

H;”(z) 1
< 0 H?Fn(Z)> s Z € F,

JUZ 2n
1 H (Z) o —
<0 1 ) zeyTuUyT,

(4.10)

and for(A, B) in case C.3,

H”(2) d,:l) el
0 H?(z))" ’

(@ 1 .
wo=1 ("9 o) i@ (411)

1 2n
(0 H+1(Z)> , ze (=1,{y.
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Fig. 8. Contourg” for T.

(RH3.3) Asz — o0,
1

(RH3.4) MatrixU is bounded in a neighborhood of the singular point§.of

4.3. Second transformatidii — T

By (4.10) and (4.11), the jump matrik, has oscillatory diagonal entries @y along
with exponentially decaying (as — o0) off-diagonal entries elsewhere and away from
(1.2 (see Fig. 7). The aim of the next step is to transform the jump matrices with oscillatory
diagonal entries into matrices asymptotically close to the identity matrix or to matrices with
constant jumps. To this end, we take advantage of an appropriate factorizatipraofl
“open the lenses” around contouts

In case C.2, we use the following factorization of the jump matrix:ferI" (where we
have taken into account that, = 1/H_ onT):

1 0 0 1 1 0

Thus, the problem of the oscillatory diagonal entries of the jump matrix tol” may
be solved by opening the lenses arodnds it is shown in Fig8 (left). The new contours
I'; andl' are also oriented frorty to {5, and this gives us two new bounded regidlg,

andQ, , as well as modified domaid] = Q;\ Q; andQ’, £ Q. \ Qx; we also denote
crEcu I'L U Tk, with the orientation shown in Fig. 8, left.
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Hence, taking into account (4.12), we define in case C.2 a new matrix-valued function
T:C\CT — C>?py

1, forze Qf UQL,
1 0 forz e Q
T() =UGR-{ \H 2@ 1) ©EL (4.13)
1 0
(—H_Z”(z) 1)’ for z € Qp.

It solves the following RHP:

(RH4.1) Tis analytic for; € C\ C7;
(RH4.2) T (z) possesses continuous boundary values at regular poidts, df, and7_,
related by the following jump conditions:

Ti(z) =T-(2)Jr(z), zeCl,

where the jump matrixy is

0 1
(_1 O)’ zel,

1 H2n
=1 (5 @) cerrur,

1 0
(H_zn(z) 1), zel'p UTg.
(RH4.3) T'(z) has the following behavior at infinity:

T(z)=1+4+0(1/z) asz— oo.

(RH4.4) T(z) is bounded in a neighborhood of the singular point€ of

In principle, we could take advantage of factorization (4.12) also in the case C.3. However,
the geometry here is more complicated; this procedure would eventually yield a constant
jump on wholeX, which has now two components. In order to give a unified treatment to
both cases in the next step, we use now a different factorizatiaf,for

0 dt 1 0 cr
—d, H @) \d.H?@) 1) ceh

Ju(@) = 1 o\ /0 1 1 0 o
e—ZATmi H:ZH(Z) 1 -1 0 H;ZH(Z) 1 ) FARS] ( 1s 2)'

These factorizations suggest to open lenses in the way shown ir8Fright, which
yields the new contou€”, splitting C into domainsQ?, QL , QF, andQg, as shown.
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Now we define the matrix-valued functidh: C \ ¢ — C2*? in the following way:

(—dnHl‘Z”(z) 2) , z € Qg,
<_?in Hii'é_nl(z)) ) zeQl,
T =U@- (_len(z) g) ; e Qf, (4.14)
(ezAnm'len @) g) . 2eQy,
I, z € ng.
ThenT (z) solves problem (RH4.1)—(RH4.4), but with the expressiori;ofeplaced by
(% 5). ze b
(d,,H‘lZ"(Z) 2) , ze€lg,
(Hzln(z) g) z€yf Uy,
Jr(z) = (e—ZA’T’“iI‘Z”(Z) :?) . zE€yUys,
(é H‘%Z(Z)> , z€(=1,{y),
((1) eZAnm'[i_IZn(Z)> | €D,
I, zel.

4.4. Construction of the parametrices

Now, we can see (cf. Fig) that we have a single open arc joining the branch polnts (
in case C.2,and1, {») in case C.3) where the jump mattix is constant, and at a positive
distance from these arcgr is asymptotically exponentially close to the identity matrix.
Hence, by ignoring the “close-to-identity” jumps and condition (RH4.4) we are lead to the
following problem: find an analytic matrix-valued functiof(z) = I + 0(1/z),z — o0,
and having the jump

0 1
Ni(z) = N-(2) (_1 o)
onTI (in case C.2) or ori{y, {») in case C.3, with the orientation “frofy to {,” chosen.
A solution of this model RHP, which is not unique in general, is [£f Chapter 7]):
a()+a@™  a@ —a@?t

_ 2 2i
NG@ = _a@) - ai)™t a@)+ax)t )’ (4.15)

2i 2
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wherea has been defined in (2.14); it satisfies
N@=0(z={I™, z—(, j=12

showing that the singularities &4 are L?-integrable. Observe that th@, 1) and (1, 2)
entries ofN coincide withN11 and N12, introduced in (2.13).

We may expedi to be close td away from{; and{,. However, in a neighborhood of the
branch points the ignored jumps are no longer close to identity, and a different parametrix
(model problem) is required. Now we look for two matriceS’, j e {1, 2}, which have
the same jumps aBin a neighborhood of = {;, and matctN on the boundary of these
neighborhoods.

def

The construction of these matrices is well described for instance in [ 7]. Dendteby=
{z € C: |z —s| < &}, where we take > 0O sufficiently small. A local parametriR/) in
Ac(()), j € {1,2}, solves the RHP with the same jumpsTabere (see Fig. 9):

(RH5.1) PV is analytic forz € A.({;) \ CT, bounded and continuous i&.({;) \ C7;
(RH5.2) PU)(z) possesses continuous boundary values at regular poiats ofA. ({;),
Pf) andej), related by the following jump conditions:

PP@ = PV@Ipn (), zeCT NAL).

(RH5.3) there exists a constamt > 0 such that for every € dA:({;) \cT,

. B M
IPDNz) - 1< —.

We describe the construction féy; in order to simplify notation we writ® instead ofP
whenever it cannot lead us into confusion. The junips= Jp« specified in (RH5.2) are

e Incase C.2:

(_01 é) ceTNA),

Jp(z) = (H_%’(z) 2) ze L UTR) NAL(L),

2n
(5 1) cerna.
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Fig. 9. Local analysis for cases C.2 (left) and C.3.

e Incase C.3:

0

1 > ze(lp—¢ ),
0 +AA

—2A7'cmH 2"(2) 1 Z€y, N ¢((2),

2"(2) 1) ’ zZ€ Vz_ N A&'(Cz)a

AT —2n
H (Z))s Ze(gzs C2+8)’

, zel.

&
J(z)—(
Sl

o

In order to solve the Riemann—Hilbert problems Rgiet us first make a simple change
of functions yielding piecewise constant jump matrices. For this purpose, we sgkfor
A\ CT,

—n¢(z)o3 i

def e , in case C.2,

R@) = P@)- { eATings =n$@)03 i case C.3, (4.16)
where¢ is the function introduced in (2.21). In order to compute the new jumps we need
to find how¢ is related tdH. In case C.2, by (4.4), exp@{z)) = H(z) forz € A, ({o)\T.

In case C.3, by continuity ap in A.({5) \ ({1, {5),

H(Zi)’ 7 € (%LUQR)OAS(CZ)QC+’
N ) e Q] NA()NCT,
exp(—¢(z)) = AR, ze Ql nA()NC, (4.17)
e TiA H(z), 7€ (QLUQr)N As(CZ) nCc~

and

(¢++¢,)(Z) =27TiA, VS (Cz—é‘, Cz)
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Now we can compute the jump matrix fB: Jz = ¢"?- @3 j o101 ()93 namely:

e Incase C.2,

0 1 .

Tr(@) = G ‘1)) e MLUTR N A

(é 1) zey_ NAL(L).

(_01 é) z€ ((p—¢& (),

Jr(z) = <i 2) z €75 NA(L).

<é 1) ze€ (2. +e).

e Incase C.3,

Observe now that we have essentially the same local problem in both cases; in this way, we
have reduced the RHP to the one studiefBin(see also [7, Chapter 7]), and we can write
its solution explicitly.

Fore > 0 small enough, function

) =2 (62))7°,

defined in (2.22), is a conformal mapping from the neighborhood of the branch point onto
a neighborhood of 0. In case CR.andy~ are mapped onto the negative and positive real
axis, respectively, and in case C.3 it happeng{o{,) and({,, 1). Also we may deform
the other curvesl(; andI'g in case C.2, anqg in case C.3) in such a way that the points
on their image by close to the branch point have the argumegt: /3.

Then the problem foR is solved by

R@) =¥ (1),

where" is built out of the Airy function Ai (see e.qd1]) and its derivative Aias follows:

Ai(r)  Ai(0?) .
(Ai’(r) WA (wzt) 0 < argr < 2n/3,;

Ai (1) Ai (wt)

g 0 )
A'(1) Al (wzt)> 3 ( 1 1) ,  2n/3 <argt <,

vor - | (A
® <A| ) —?Ai(wr) % ( > -7 < argt < —2n/3;
( %

Ai'(t) —Ai'(wrt)
Ai(t) —w?Ai(wr)

A —A'(wr) —2n/3 < argr < 0,

(4.18)
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andw £ ¢2%/3_ Finally, matrixP solving (RH5.1)—(RH5.3) is

_ 9@ in case C.2,
P(2) =EQ@)R@)- { e—Aminag en¢(z)63" in case C.3, (4'19)
where the analytic matrix functiof is

) 1/6 1/4\ %3
E() % Jre® (-11 _?) <i> . (4.20)

—1 a(z)

4.5. Final transformatior?” — S

Now we may use matrix valued functiohsand P for the final transformation. Re-
calling the definition of the contout”, define the matrix-valued functic®:

et : TN, 2eC\ (€T UACD) UA(), (4.21)

Sk) = . _
D=V 10 (PO zeAdl). j=12

It is immediate to check tha&is analytic inC \ C5, whereC® is the contour shown in
Fig. 10. MoreoverS : C\C5 — C?*2 satisfies the following Riemann—Hilbert problem:

(RH6.1) Sis analytic inC \ C5.
(RH6.2) Shas continuous boundary values at regular pointsofienoted bys, ands_,
such thatS, (z) = S_(z)Js(z), where

PY()N(2)L, z€ A (), j=1.2,
N@JIr@N@™ zeC5\ (0A(Ly) UdA:(LR).

(RH6.3) S(z) = I+ 0(1/72), z — oc.
(RH6.4) S(z) is bounded in a neighborhood of the singular point€-f

Js(z) = {

Observe that by constructiodls = I + O(1/n) asn — oo ondA({;), j = 1,2, and is

exponentially close tb on the rest of contours @°. Using the same arguments ag 7
we conclude that

1
S(Z)=I+0<—)
n

uniformly forz € C \ C5.

5. Proofs of the main results

We establish strong asymptotics figr, } tracing back all the previous transformations.
For the sake of brevity, we do it explicitly only for case C.3. The proofs in case C.2 are very
similar.
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Fig. 10. Contourg’S for Sin cases C.2 (left) and C.3.

5.1. Proof of Theorems 1 and 2 in case C.3
Assume that-1 < A < 0 < B (case C.3); by (4.9),
Y(2) = di¥ i7" (2)G ()", 2,
so that

G n
@) = Y11(2) = (%) Un(). (5.1)

Assume that € C\ PcZ), away from the branch points; without loss of generality we
may takez € Q7 \ (A.({1) UA.({»)) (see Fig8 or 10). Then by (4.14),

U(z) = S(z)N(2),
and taking into account the expressio\oh (4.15), we obtain that uniformly on compact
subsets 002, \ (A ({1) U A:(2)),
G n
Pa(2) = Y11(2) = (%) (SN)11 ()

_ (%) N11(2) <1+ 0 (%)) , (5.2)

which proves (2.15).
If zbelongs to the bounded componentdfl’, we may assume without loss of generality
thatz € Q1 \ A,((,). By (4.14) and (4.21),

H™2'(z) —d?!
d, o )

U(z) = SN (2) <
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and again uniformly in compact subsetsﬂif \ As(9),

G n
() = (%) <[SN]11 (2)H™?"(2) + dn [SN]12 (Z))

_ (%) (H_Z"(Z)Nll(Z) <1~|— o (%)) + d, N12(2) <1+ o <%))) ;

which proves (2.16). Obviously, this formula is valid alsa i€ T'_, that is, ifzlies on the
“—"-side of I, away from the branch points.

Assume now that € I'; away from{,. Again, without loss of generality we may take
7 € Qr \ A ({2). By (4.14) and (4.21),

U(x) =S@)N(2) <dnH}2n (2) 2> 7

and uniformly in compact subsets Qf; \ A.({5),

G n
Pu@) = (%) (ISN2 @) + duH 2 () [N )

= (@> <N11(z) (1+ 0 <1)) +dyH™ 2" (2)N12(2) (1+ 10) (3») ,
K n n

which proves (2.18). Using (4.7) it is easy to see that formulas (2.16) and (2.18) match on
I.
Finally, if z lies on thex-side of the interval(y, {»), we assume < Qf \ (Ag(&) U

A:({5)), where by (4.14) and (4.21),
1 0) 4
< —2n ; z€Qr,
U(z) =S@)N(@2) - " (Z)l ' 0
<_e—2A7tinH—2n(Z) 1) s 7 € QZ

Hence, uniformly in compact subsets(@f \ (As({1) U As(&r)),

G n
Pa() = (%) (1M1 @)+ H2'@) [SN112 )

= <@> <N11(z) (1 +0 (1)> + H™?"(2)N12(2) (1+ 0 (3») ;
K n n

while uniformly in compact subsets 0F, \ (A.({1) U A:({2)),

Gi)\" .
pn(2) = (%) ([SN]n (z) — e 2AT H=21 () [SN]12 (Z))

_ (@) <N11(Z) (1 +0 <1>>
. n
_ o 2Amin pr—2n (z)N12(2) <1+ 0 (%))) .

This finishes the proof of (2.19) and (2.20).
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5.2. Proof of Theorem 4

Letz € A.({,); then by (4.21),
U(z) = S)P(2)K L(2),

whereK (z) is one of the matrices given in the right-hand side/bi4). Gathering (4.19)
and (4.20), we get that

. 1/4\ 93
P(z) = ﬁe% ( 1. _1> ([n_> ¥ (1) p—Amings end)(z)ag’
—1

—1 a(z)

with 1, & n2/3 £(z) and¥ given by (4.18). For instance, ife A, ({») N Qg, using (4.17)
we get

. 1/4\ 03
U() = V/re S(z)<_1i f) (t—) ¥ (n2°f ()

L a(z)

_Ami 1) 1 0
xe~ATings ond()os (dnean)(z) 1) .

Observethatfor € A, ({,)NQ}, we have O< arg f (z) < 2r/3, and we use the expression

_(Ai(r)  Ai(w?n) _mig
qj(t)_<Ai/(t) wZAi/(th)>e o

Hence,
1/4\ 03
U11(2) _ no(z) 1 -1 In Altn) )
(t5)) = vesosa (2, —i)<a(z)) (2i):
where

A(t) & e AT (1) 4+ 2i €3 sin(Amn) Ai(021), o = 2113,
Consequently,
i’

Ui = vae @ (2 aq,) (1+ 0 (5)) ~ 2 ) (1+ 0 (3>> ,
a(2) n 173 .

and taking into account (5.1) and the fact that\i({,) N Q}F, exp(—¢) = H, we arrive
at (2.23). Proceeding in a similar way, we see that this expression is also vatithftire
other regions of\, ({5).

5.3. Proof of Theorem 5

This theorem is a corollary of Theorems 1 and 2. First, taking into account (2.15) and
that functionN11, defined in (2.13), has no zeros in the plane cut figro {5, we see that
zeros of{ p, } cannot accumulate &t \ PcZ).
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Consider in particular case C.3. Now the asymptotic location of the zeros of Jacobi
polynomials depends also on the value

e = lim |d,|*" = lim |sin(Azn)|¥",
n—oo n—oo

(assuming it exists), whe,, defined in (4.2), depends upon the distance, 0& An to
the integers, in such a way that

e = lim (dist(a,, 2))*".
n—oo

Letz € Int(Pc®)), that is,zlies in the bounded component limited by the contbukVe
can choose > 0 small enough such that¢ A.({>). Then, the asymptotic formula (2.16),

1 —n 1
@)= ((G(z)wz(z)) N1 () <1+ 0 (—))
K n

i 1
+2ie A" sin(Amn) G™(2) N12(2) (1—{— 0] (—))) ,
n
is valid. Hencezis a zero ofp, only if
i 1
H2(2) = —2ie=Anmi gin(Amn) Y12&) <1+ 0 (-)) .
N11(z) n

SinceN12/N11 is uniformly bounded and uniformly bounded away from zero, we see that
the zeros in this domain must satisfy

|H1(2)] = | sin(Arn) /(@) (1+ 0 (%)) o2 <1+ 0 (%)) .

It remains to use thatf (z)| = ¢’/2 defines in IntPc)) the curverl,.

Once we have established where the zeros accumulate, it remains to prove that they
asymptotically distribute according to the corresponding measures in parts (i) and (ii).
To this end we can use the second order linear differential equation satisfied by Jacobi

polynomialsy,, = Pn(“"’ﬁ") (see e.g[35, §4.22)):
A= 22)y" @) + [By — o — (n + B, + 2] 3 (2)
+n(n+ oy + B, + Dya(z) = 0.
If we rewrite it in terms ofh,, = y,, /(ny,), we obtain a Riccati differential equation:

A=) (G0 43 ) + = Otk 2

n
e o
n

h(2)

0. (5.3)

Let v, denote the normalized zero counting measures, ot Pn(“"’ﬂ”). By a weak com-
pactness argument we know that there exists an infinite subsegieracéN and a unit
measure such that, — v, n € A, in the weak*-topology. In the first part of this proof,
we saw that suppj consists of a finite union of analytic arcs or curves, and every compact

subset ofC \ supp¢) contains no zeros o?,f“”’ﬁ") for n sufficiently large.
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Hence,

h,(z) = /a;vn(tt) — h(z) = /dv(t)’ neA,

z—1

locally uniformly inC\ supp¢). Taking limits in (5.3) we obtain thdtsatisfies the quadratic
equation

A—2)h?@) +[B—A—(A+B)zlh(z) +A+B+1=0,
so that

/dv(t) A+B+2 R(2) 1( A B
= - = -
z—1 z+41

z—t 2 2—-1 2
By Sokhotsky-Plemelj’s formulas, on every arc of supp(

2ni z2-—-1

(this derivation might serve as a motivation of definition (2.1) of the branch pints

Now, we are concerned with proving part (ii) of the theorem, related to case C.3. First,
consider the generic case when= 0. In this case, the measurein (2.5) is supported
onX = I'U[{4, {5]. Thus, by (5.4)u' = v a.e. on suppy, u, v being unit measures.
Therefore,y = u. The proof in the case & r < oo is similar, but with measures,,
given in (2.24), in place ofi. Finally, for the degenerate case= oo, which takes place
when parameters, approach the integers faster than exponentially, it is enough to take into
account that the Cauchy transform of the meagldre- —Ad1isG(z) = —A/(z — 1).

Finally, the proof for case C.2 is totally analogous.

), z € C\ supp¢).

dv(z) = dz (5.4)
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